Design IIR Band-Reject Filters

In this post, I show how to design IIR Butterworth band-reject filters, and provide two Matlab functions for band-reject filter synthesis. Earlier posts covered IIR Butterworth lowpass [1] and bandpass [2] filters. Here, the function br_synth1 .m designs band-reject filters based on null frequency and upper 3 dB frequency, while br_synth2.m designs them based on lower and upper -3dB frequencies. I'll discuss the differences between the two approaches later in this article. Here is an example function call to br_synth1.m:

```
N= 2; % order of prototype LPF
f0= 15; % Hz Null frequency
fU= 16; % Hz fU= upper -3 dB freq
fs= 100; % Hz sample frequency
[b, a]= br_synth1 (N,f0,fU,fs)
b= 0.9167 -2.1554 3.1004 -2.1554 0.9167
a llllllll
```

There are five " b " (numerator) and five " a " (denominator) coefficients, so $\mathrm{H}\left(\mathrm{z}\right.$) is $4^{\text {th }}$ order. The frequency response is computed as follows, and is plotted in Figure 1.

```
[h,f]= freqz(b,a,4096,fs);
H=20*log10(abs(h));
```


Figure 1. Magnitude response of band-reject filter based on $\mathrm{N}=2$ lowpass prototype. $\mathrm{fO}=15 \mathrm{~Hz}, \mathrm{fU}=16 \mathrm{~Hz}$, and fs=100 Hz.

Filter Synthesis

Here is a summary of the steps for computing the band-reject filter coefficients. Note F is continuous (analog) frequency in Hz and Ω is continuous radian frequency.

1. Find the poles of a lowpass analog prototype filter with $\Omega_{c}=1 \mathrm{rad} / \mathrm{s}$.
2. Given the null frequency f_{0} and upper -3 dB frequency f_{u} of the digital band-reject filter, find the corresponding frequencies of the analog band-reject filter (pre-warping).
3. Transform the analog lowpass poles to analog band-reject poles.
4. Transform the poles from the s-plane to the z-plane, using the bilinear transform.
5. Add N zeros at $z=\exp \left(j \omega_{0}\right)$ and N zeros at $z=z=\exp \left(-j \omega_{0}\right)$, where N is the order of the lowpass prototype.
6. Convert poles and zeros to polynomials with coefficients a_{n} and b_{n}.

These steps are similar to the bandpass design procedure, with steps $2,3,5$, and 6 modified for the band-reject case. Now let's look at the design procedure in detail. The Matlab function br_synth1.m that performs the filter synthesis is provided in Appendix A.

1. Poles of the analog lowpass prototype filter. For a Butterworth filter of order N with $\Omega_{c}=1 \mathrm{rad} / \mathrm{s}$, the poles are given by $[3,4]$:

$$
\begin{gathered}
p_{a k}^{\prime}=-\sin \theta+j \cos \theta \\
\text { where } \quad \theta=\frac{(2 k-1) \pi}{2 N}, k=1: N
\end{gathered}
$$

Here we use a prime superscript on p to distinguish the lowpass prototype poles from the yet to be calculated band-reject poles.
2. Given null frequency f_{0} and upper -3 dB frequency f_{u} of the digital band-reject filter, find the corresponding frequencies of the analog band-reject filter. As before, we'll adjust (pre-warp) the analog frequencies to take the nonlinearity of the bilinear transform into account:

$$
\begin{aligned}
& F_{0}=\frac{f_{s}}{\pi} \tan \left(\frac{\pi f_{0}}{f_{s}}\right) \\
& F_{U}=\frac{f_{s}}{\pi} \tan \left(\frac{\pi f_{U}}{f_{s}}\right)
\end{aligned}
$$

We also need to find the lower -3 dB frequency F_{L} and the bandwidth $\mathrm{BW}_{\mathrm{Hz}}$:

$$
\begin{gathered}
F_{L}=F_{0}^{2} / F_{U} \\
B W_{\mathrm{Hz}}=\mathrm{F}_{\mathrm{U}}-\mathrm{F}_{\mathrm{L}}
\end{gathered}
$$

3. Transform the analog lowpass poles to analog band-reject poles. See Appendix B for a derivation of the transformation. For each lowpass pole pa^{\prime}, we get two band-reject poles:

$$
p_{a}=2 \pi F_{0}\left[\frac{B W_{H z}}{2 F_{0} p_{a}^{\prime}} \pm j \sqrt{1-\left(\frac{B W_{H z}}{2 F_{0} p_{a}^{\prime}}\right)^{2}}\right]
$$

4. Transform the poles from the s-plane to the z-plane, using the bilinear transform (Note there are 2 N poles). This is the same as for the IIR bandpass:

$$
p_{k}=\frac{1+p_{a k} /\left(2 f_{s}\right)}{1-p_{a k} /\left(2 f_{s}\right)}, \quad k=1: 2 N
$$

5. Add N zeros on the unit circle at $\mathrm{z}=\exp \left(\mathrm{j} \omega_{0}\right)$ and N zeros at $\mathrm{z}=\exp \left(-\mathrm{j} \omega_{0}\right)$, where $\omega_{0}=2 \pi f_{0} / \mathrm{f}_{\mathrm{s}}$. See Appendix B for details. We can now write $H(z)$ as:

$$
\begin{equation*}
H(z)=K \frac{\left(z-e^{j \omega_{0}}\right)^{N}\left(z-e^{-j \omega_{0}}\right)^{N}}{\left(z-p_{1}\right)\left(z-p_{2}\right) \ldots\left(z-p_{2 N}\right)} \tag{1}
\end{equation*}
$$

In br_synth1.m, we represent the N zeros at $\exp \left(j \omega_{0}\right)$ and N zeros at $\exp \left(-\mathrm{j} \omega_{0}\right)$ as a vector:

$$
q=[\exp (j * w 0) * \operatorname{ones}(1, N) \exp (-j * w 0) * \operatorname{ones}(1, N)] ;
$$

6. Convert poles and zeros to polynomials with coefficients a_{n} and b_{n}. If we expand the numerator and denominator of equation 1 and divide numerator and denominator by $z^{2 N}$, we get polynomials in z^{-n} :

$$
\begin{equation*}
H(z)=K \frac{b_{0}+b_{1} z^{-1}+\cdots+b_{2 N} z^{-2 N}}{1+a_{1} z^{-1}+\cdots+a_{2 N} z^{-2 N}} \tag{2}
\end{equation*}
$$

The Matlab code to perform the expansion is:

```
a= poly(p)
a= real(a)
b= poly(q)
```

We want $H(z)$ to have a gain of 1 at $\omega=0$. Letting $z=e^{j \omega}$, we have $z=1$. Then, referring to equation 2 , we have gain at $\omega=0$ of:

$$
H(z=1)=K \frac{\sum b}{\sum a}
$$

So, for gain of 1 at $\omega=0$, we make $K=\sum a / \sum b$.

Example 1

Let's repeat the example of Figure 1, adding some more detail. We'll plot the poles and zeros computed by br_synth1.m, and we'll also look at the group delay. (Note the pole and zero values are not printed by the code listed in Appendix A). Repeating the function call from above:

```
N= 2; % order of prototype LPF
f0= 15; % Hz Null frequency
fU= 16; % Hz fU= upper -3 dB freq
fs= 100; % Hz sample frequency
[b,a]= br_synth1(N,f0,fU,fs)
```

Here are the poles and zeros:
$p=0.5968+0.7504 i \quad 0.5278+0.7973 i \quad 0.5278-0.7973 i \quad 0.5968-0.7504 i$
$q=0.5878+0.8090 i 0.5878+0.8090 i \quad 0.5878-0.8090 i \quad 0.5878-0.8090 i$

The zeros are on the unit circle, with $\mathrm{N}=2$ zeros at $\exp \left(\mathrm{j} \omega_{0}\right)$ and 2 zeros at $\exp \left(-\mathrm{j} \omega_{0}\right)$. The poles and zeros are plotted in Figure 2. Now let's look at the filter coefficients.

Numerator coefficients before scaling (note symmetry with respect to center):

$$
\begin{array}{lllll}
\mathrm{b}= & 1.0000 & -2.3511 & 3.3820 & -2.3511
\end{array} 1.0000
$$

Numerator scale factor:
$K=0.9167$

Filter coefficients b and a :

$\mathrm{b}=$	0.9167	-2.1554	3.1004	-2.1554	0.9167
$\mathrm{a}=$	1.0000	-2.2492	3.0935	-2.0616	0.8404

From K, b, and a, we can write the filter's transfer function:

$$
H(z)=.9167 * \frac{1-2.3511 z^{-1}+3.382 z^{-2}-2.3511 z^{-3}+z^{-4}}{1-2.2492 z^{-1}+3.0935 z^{-2}-2.0616 z^{-3}+.8404 z^{-4}}
$$

The magnitude response was plotted in Figure 1. Figure 3 shows the magnitude and group delay responses over a 10 Hz bandwidth centered at the null frequency. The group delay response is not very flat, even outside the -1 dB frequency of the amplitude response.

Figure 2. Poles and zeros of band-reject filter based on 2 nd order lowpass prototype.
$\mathrm{fO}=15 \mathrm{~Hz}, \mathrm{fU}=16 \mathrm{~Hz}$, and fs= 100 Hz . Zeros at $\mathrm{z}=\exp \left(+-\mathrm{j} \omega_{0}\right)$ are $2^{\text {nd }}$ order.

Figure 3. Response of band-reject filter based on2nd order lowpass prototype.
$\mathrm{fO}=15 \mathrm{~Hz}, \mathrm{fU}=16 \mathrm{~Hz}$, and $\mathrm{fs}=100 \mathrm{~Hz}$.
Top: Magnitude Response Bottom: Group Delay [gd,f]= grpdelay(b, a, 4096, fs);

Example 2

Let's look at the magnitude response for different filter orders, for a null frequency $f_{0}=30 \mathrm{MHz}$ and -3 dB bandwidth bw of about 4 Hz . For a narrowband filter, the $-3 d B$ frequencies f_{u} and f_{L} are approximately $f_{0}+b w / 2$ and $f_{0}-b w / 2$, respectively. So we have $f_{U}=30+2=32 \mathrm{~Hz}$. The function call is:

```
[b,a]= br_synth1(N,f0,fU,fs)
```

Letting $N=1,2$, and 3 , we compute the magnitude response and obtain the plots shown in Figure 4. All of the plots have f_{u} of exactly 32 Hz and f_{L} of slightly less than 28 Hz .

Figure 4. Magnitude response of band-reject filters vs. order of lowpass prototype. $\mathrm{fO}=30 \mathrm{~Hz}, \mathrm{fU}=32 \mathrm{~Hz}$, and fs= 100 Hz .

Comparing the two Matlab functions for Band-reject Filter Synthesis

From Appendix B, the null frequency of the analog band-reject filter is:

$$
\begin{equation*}
\Omega_{0}=\sqrt{\Omega_{L} \Omega_{U}} \tag{3}
\end{equation*}
$$

where Ω_{L} and Ω_{H} are the lower and upper -3 dB frequencies. In designing a filter, we can choose two of the three parameters in Equation 3, and the other is then determined. For br_synth1.m, we chose Ω_{0} and Ω_{H}, while for br_synth $2 . m$ we chose Ω_{L} and Ω_{H}. The disadvantage of the latter choice is that the
null frequency falls at the geometric mean of Ω_{L} and Ω_{H}, which is not convenient if we want a deep null at a particular frequency.

Figure 5 compares the responses for the two functions. The top plot is for br_synth1.m, with $\mathrm{fO}=30$ and $f U=34$. The bottom plot is for br_synth2.m, with $f L=26$ and $f U=34$, which results in a null frequency of 30.168 Hz . Table 1 shows how each Matlab function computes frequencies.

Table 1. Frequency Computations of br_synth1.m and br_synth2.m

	br_synth1 (N, f0, fU, fs)	br_synth2 (N, fL, fU, fs)
discrete input frequencies	f0, fU	fL, fU
Analog pre-warped frequencies	$\begin{aligned} & \mathrm{FO}=\mathrm{fs} / \mathrm{pi} \star \tan (\mathrm{pi*f0/fs)} \\ & \mathrm{FU}=\mathrm{fs} / \mathrm{pi} \star \tan (\mathrm{pi} \star \mathrm{fU} / \mathrm{fs}) \\ & \mathrm{FL}=\mathrm{F} 0^{\wedge} 2 / \mathrm{FU} \end{aligned}$	$\begin{aligned} & \text { FL= fs/pi * } \tan (p i * f L / f s) \\ & F U=\mathrm{fs} / \mathrm{pi} * \tan (p i * f U / f s) \\ & F 0=\operatorname{sqrt}(F L * F U) ; \end{aligned}$
resulting discrete frequencies	fL= fs/pi*atan(pi*FL/fs)	$\mathrm{f} 0=\mathrm{fs} / \mathrm{pi*}$ atan(pi*F0/fs)

Note that $[b, a]=b r _s y n t h 2(N, f L, f U, f s)$ gives the same results as the Matlab function $[b, a]=$ butter ($N,[f L f U] * 2 / f s,^{\prime}$ stop') .

Figure 5. Magnitude Responses of two Matlab functions, fs=100 Hz
Top: $[b, a]=b r _s y n t h 1(2,30,34, f s)$
Bottom: $[\mathrm{b}, \mathrm{a}]=\mathrm{br}$ _synth2 $(2,26,34, \mathrm{fs})$

Coefficient Quantization and Null Depth

The frequency response of a digital filter is $\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)$, with $0<\omega<2 \pi$. In other words, we evaluate $H(z)$ on the unit circle. As shown in Figure 2, a band-reject filter has N zeros at exp(j ω_{0}) and N zeros at $\exp \left(-j \omega_{0}\right)$, which produce a null in the response at ω_{0}. For a real-world filter, the numerator coefficients b are quantized, which means the zeros don't fall exactly at the desired spots on the unit circle. As a result, a practical band-reject filter does not have a perfect null at ω_{0}.

Let's look at how quantization of the numerator coefficients affects the response of the filter in Example 1 , which is based on an $\mathrm{N}=2$ lowpass prototype. Repeating the function call once again:

```
N= 2; % order of prototype LPF
f0= 15; % Hz Null frequency
fU= 16; % Hz fU= upper -3 dB freq
fs= 100; % Hz sample frequency
[b,a]= br_synth1(N,f0,fU,fs);
```

$\begin{array}{llllll}\text { The numerator coefficients are: } \mathrm{b}=0.9167 & -2.1554 & 3.1004 & -2.1554 & 0.9167\end{array}$ Now let's quantize the numerator coefficients to $2^{13}=8192$ steps per unit of coefficient amplitude:

```
bq= round(b*8192)/8192;
```

The poles and zeros are then:

```
q= roots(bq);
p= roots(a);
```

The amplitude response is computed using bq and a:

```
[h,f]= freqz (bq,a,Nfft,fs);
H= 20*log10(abs(h));
```

The resulting zeros and amplitude response are shown in the top row of Figure 6. In the pole-zero plot, which shows just quadrant 1 of the z-plane, you can just notice that the two zeros do not fall at exactly the same place. The depth of the null is about 45 dB . If we quantize to 4096 steps, we get the plots in the bottom row of Figure 6 . Null depth is about 33 dB .

Quantizing to 2048 steps gives a null depth of only 25 dB , as shown in the top row of Figure 7. One way to get a deeper null without adding coefficient bits is to experiment with slight offsets of f_{0}, which may result in quantized zero locations that are closer to a point on the unit circle. For example, the bottom row of Figure 7 has 2048 steps and $f_{0}=15.03 \mathrm{~Hz}$, resulting in a null depth of about 43 dB .

For lowpass prototype $\mathrm{N}>2$ (band-reject order >4), the effects of quantization of both numerator and denominator coefficients are more pronounced. Quantization of denominator coefficients can cause a pole to move outside the unit circle, making the filter unstable. In many cases, it may be advisable to break the filter up into a cascade of second order sections [5,6].

Figure 6. Quantization of numerator coefficients of BRF based on $N=2$ lowpass.
Top row: quantization with 8192 steps per unit of coefficient amplitude Bottom row: quantization with 4096 steps per unit of coefficient amplitude

Figure 7. Quantization of numerator coefficients of BRF based on $\mathrm{N}=2$ lowpass. Top row: quantization with 2048 steps per unit of coefficient amplitude Bottom row: quantization with 2048 steps with f_{0} offset to 15.03 Hz

Appendix A. Matlab Functions br_synth1.m and br_synth2.m

These programs are provided as-is without any guarantees or warranty. The author is not responsible for any damage or losses of any kind caused by the use or misuse of the programs.

```
%function [b,a]= br_synth1(N,f0,fU,fs) 1/15/18 Neil Robertson
% synthesize band reject IIR Butterworth filter with null frequency f0 and
% upper -3 dB frequency fU.
%
% N= order of prototype LPF
% f0= null frequency, Hz
% fU= upper -3 dB frequency, Hz
% fs= sample frequency, Hz
function [b,a]= br_synth1(N,f0,fU,fs)
if fU>=fs/2
    error('fU must be less than fs/2')
end
% pre-warp f0 and fu
FO= fs/pi * tan(pi*f0/fs);
FU= fs/pi * tan(pi*fU/fs);
FL= FO^2/FU; % Hz analog lower -3 dB freq
BW_hz= FU-FL; % Hz analog -3 dB bandwidth
%f\overline{L}= fs/pi*atan(pi*FL/fs) % lower - 3 dB freq
% find poles of butterworth lpf with Wc = 1 rad/s
k= 1:N;
theta=(2*k -1)*pi/(2*N);
p_lp= -sin(theta) + j*cos(theta);
% transform poles for brf centered at 2*pi*F0
% note: alpha and beta are vectors of length N; pa is a vector of length 2N
alpha= BW_hz/FO * 1 ./(2*p_lp);
beta= sqry}(1-(BW_hz/F0./(\overline{2}*p_lp)).^2)
pa= 2*pi*F0*[alph\overline{a}+j*beta alpha-j*beta];
% find poles and zeros of digital filter
p=(1 + pa/(2*fs))./(1 - pa/(2*fs)); % poles from bilinear transform
w0= 2*pi*f0/fs;
q=[exp(j*w0)*ones (1,N) exp (-j*W0)*ones(1,N)]; % zeros at w0 on unit circle
% convert poles and zeros to numerator and denominator polynomials
a= poly(p);
a= real(a);
b= poly(q);
b= real(b) ;
% scale coeffs so amplitude is 1.0 at f= 0
K= sum(a)/sum(b);
b}=\textrm{K}*\textrm{b}\mathrm{ ;
```

```
%function [b,a]= br_synth2(N,fL,fU,fs) 1/15/18 Neil Robertson
% synthesize band reject IIR Butterworth filter with -3 dB frequencies fL and
%fU. Note null frequency f0 is offset from center frequency.
%
% N= order of prototype LPF
% fL= lower -3 dB freq, Hz
% fu= upper -3 dB freq, Hz
% fs= sample frequency, Hz
function [b,a]= br_synth2(N,fL,fU,fs)
if fu>=fs/2
    error('fU must be less than fs/2')
end
% pre-warp fL and fU
FL= fs/pi * tan(pi*fL/fs);
FU= fs/pi * tan(pi*fU/fs);
BW_hz= FU-FL; % Hz analog -3 dB bandwidth
FO= sqrt(FL*FU); % Hz analog null frequency
f0= fs/pi*atan(pi*F0/fs); % Hz discrete null frequency
% find poles of butterworth lpf with Wc = 1 rad/s
k= 1:N;
theta= (2*k -1)*pi/(2*N);
p_lp= -sin(theta) + j*cos(theta);
% transform poles for brf centered at 2*pi*F0
% note: alpha and beta are vectors of length N; pa is a vector of length 2N
alpha= BW_hz/F0 * 1 ./(2*p_lp);
beta= sqret(1- (BW_hz/F0./(2*p_lp)).^2);
pa= 2*pi*FO*[alph\overline{a}+j*beta al\overline{pha-j*beta];}
% find poles and zeros of digital filter
p= (1 + pa/(2*fs))./(1 - pa/(2*fs)); % poles from bilinear transform
w0= 2*pi*f0/fs;
q= [exp(j*w0)*ones(1,N) exp (-j*w0)*ones(1,N)]; % zeros at w0 on unit circle
% convert poles and zeros to numerator and denominator polynomials
a= poly(p);
a= real(a);
b= poly(q);
b= real(b);
% scale coeffs for gain of 1 at f= 0
K= sum(a)/sum(b);
b= K*b;
```


Appendix B. Lowpass to Band-reject Frequency Transformation

The lowpass to band-reject transformation is the inverse of the lowpass to bandpass transformation we performed in the last post. In the s-domain, we want to transform a normalized lowpass filter with -3 dB frequency of $1 \mathrm{rad} / \mathrm{s}$ to a band-reject filter with a given bandwidth and null frequency [7,8]. Once we have the band-reject $\mathrm{H}(\mathrm{s})$, we can use the bilinear transform to obtain $\mathrm{H}(\mathrm{z})$. We define two frequency variables:

$$
\begin{array}{ll}
\Omega=\operatorname{Im}(\mathrm{s}) & \text { imaginary part of the complex frequency } \\
\Omega^{\prime}=\operatorname{Im}\left(s^{\prime}\right) & \text { imaginary part of the normalized complex frequency }
\end{array}
$$

(As in the previous two posts, we use Ω for continuous frequency and reserve ω for discrete frequency). To transform $\mathrm{H}\left(\mathrm{s}^{\prime}\right)$ into $\mathrm{H}(\mathrm{s})$, substitute the following for s^{\prime} :

$$
s^{\prime}=\frac{B W}{\Omega_{0}} \frac{1}{\left(\frac{s}{\Omega_{0}}+\frac{\Omega_{0}}{S}\right)} \quad B-1
$$

where $\mathrm{BW}=\Omega_{U}-\Omega_{L}=-3 \mathrm{~dB}$ bandwidth and $\Omega_{0}=\sqrt{\Omega_{L} \Omega_{U}}$. As we will show, Ω_{0} is the null frequency of the filter. Rearranging $B-1$, we have:

$$
s^{\prime}=B W \frac{s}{s^{2}+\Omega_{0}^{2}} \quad B-2
$$

Then, solving for s :

$$
s=\Omega_{0}\left[\frac{B W}{2 \Omega_{0} s^{\prime}} \pm j \sqrt{1-\left(\frac{B W}{2 \Omega_{0} s^{\prime}}\right)^{2}}\right]
$$

If we replace s^{\prime} with a normalized lowpass pole location $p^{\prime}{ }^{\prime}$, we have:

$$
p_{a}=\Omega_{0}\left[\frac{B W}{2 \Omega_{0} p_{a}^{\prime}} \pm j \sqrt{1-\left(\frac{B W}{2 \Omega_{0} p_{a}^{\prime}}\right)^{2}}\right] \quad B-3
$$

For each lowpass pole pa^{\prime}, we get two band-reject poles. Thus if the lowpass filter has order $\mathrm{N}, \mathrm{H}(\mathrm{s})$ for the band-reject filter has order 2N. The IIR filter's poles are computed from p_{a} using the bilinear transform, as discussed in step 4 in the section on filter synthesis.

For the Matlab function, we replace Ω_{0} with $2 \pi \mathrm{~F}_{0}$ and replace BW with $2 \pi^{*} \mathrm{BW} \mathrm{Hz}$:

$$
p_{a}=2 \pi F_{0}\left[\frac{B W_{H z}}{2 F_{0} p_{a}^{\prime}} \pm j \sqrt{1-\left(\frac{B W_{H z}}{2 F_{0} p_{a}^{\prime}}\right)^{2}}\right] \quad B-4
$$

Oddly enough, the poles of Butterworth band-reject and band-pass filters with the same order, center frequency and bandwidth are identical. (This results from the lowpass prototype complex-conjugate poles falling on a unit circle in the s-plane). Thus the feedback (denominator) coefficients of the bandpass and band-reject filters are the same.

Zeros of $\mathrm{H}(\mathrm{s})$ and $\mathrm{H}(\mathrm{z})$

Consider a single-pole normalized lowpass transfer function in s':

$$
H\left(s^{\prime}\right)=\frac{1}{s^{\prime}-\alpha}
$$

It has a zero at $s^{\prime}=$ infinity. From B-2, we have for the corresponding band-reject filter:

$$
\begin{gathered}
H(s)=\frac{1}{B W \frac{s}{s^{2}+\Omega_{0}^{2}}-\alpha} \\
H(s)=\frac{s^{2}+\Omega_{0}^{2}}{B W * s-\alpha\left(s^{2}+\Omega_{0}^{2}\right)} \\
H(s)=\frac{\left(s+j \Omega_{0}\right)\left(s-j \Omega_{0}\right)}{B W * s-\alpha\left(s^{2}+\Omega_{0}^{2}\right)}
\end{gathered}
$$

$H(s)$ has zeros at $+j \Omega_{0}$ and $-\mathrm{j} \Omega_{0}$. In general, if $\mathrm{H}\left(\mathrm{s}^{\prime}\right)$ has N zeros at infinity, then $\mathrm{H}(\mathrm{s})$ has N zeros at $+\mathrm{j} \Omega_{0}$ and N zeros at - $\mathrm{j} \Omega_{0}$. Thus Ω_{0} is the null frequency of the analog band-reject filter.

In the z -domain, $\mathrm{H}(\mathrm{z})$ has zeros on the unit circle at $\exp \left(\mathrm{j} \omega_{0}\right)$ and $\exp \left(-\mathrm{j} \omega_{0}\right)$, where ω_{0} is related to Ω_{0} by the frequency mapping of the bilinear transform [1]:

$$
\Omega_{0}=2 f_{s} \tan \left(\frac{\omega_{0}}{2}\right)
$$

or

$$
\omega_{0}=2 \tan ^{-1}\left(\frac{\Omega_{0}}{2 f_{s}}\right)
$$

We can now write $\mathrm{H}(\mathrm{z})$ in pole-zero format as:

$$
H(z)=K \frac{\left(z-e^{j \omega_{0}}\right)^{N}\left(z-e^{-j \omega_{0}}\right)^{N}}{\left(z-p_{1}\right)\left(z-p_{2}\right) \ldots\left(z-p_{2 N}\right)} \quad B-5
$$

A z-plane pole-zero plot illustrating the zeros on the unit circle is shown in Example 1 in the main text (Figure 2).

In the Matlab functions br_synth1.m and br_synth2.m, we expand the numerator and denominator of $\mathrm{H}(\mathrm{z})$ to get the filter coefficients. Note you can begin to expand the numerator by hand as follows:

$$
\begin{gathered}
\text { numerator }=\left[z^{2}-z\left(e^{j \omega_{0}}+e^{-j \omega_{0}}\right)+1\right]^{N} \\
=\left[z^{2}-2 \cos \left(\omega_{0}\right) z+1\right]^{N}
\end{gathered}
$$

It then turns out that the numerator coefficients are symmetric with respect to the center coefficient, and the first and last coefficients are unity (before scaling by K).

Appendix C Notation

Notation for normalized lowpass continuous frequencies:
normalized radian frequency
$\Omega^{\prime} \mathrm{rad} / \mathrm{s}$
normalized complex frequency
$s^{\prime}=\sigma+j \Omega^{\prime}$

Notation for band-reject filter continuous frequencies:

-3 dB frequencies	$\Omega_{\mathrm{L}}, \Omega_{\mathrm{u}} \mathrm{rad} / \mathrm{s}$
-3 dB bandwidth	$\mathrm{BW} \mathrm{rad} / \mathrm{s}$
null frequency	$\Omega_{0}=\sqrt{\Omega_{L} \Omega_{U}} \mathrm{rad} / \mathrm{s}$
-3 dB bandwidth, Hz	$\mathrm{BW} \mathrm{Hz}^{\mathrm{Hz}}$
null frequency, Hz	$\mathrm{F}_{0} \mathrm{~Hz}$

Notation for band-reject filter discrete frequencies:
-3 dB frequencies, Hz
$f_{L}, f u H z$
null frequency, Hz
$f_{0} \mathrm{~Hz}$

General notation:

continuous frequency	FHz
continuous radian frequency	Ω radians $/ \mathrm{s}$
complex frequency	$\mathrm{s}=\sigma+\mathrm{j} \Omega$
discrete frequency	fHz
discrete normalized radian frequency	$\omega=2 \pi f / \mathrm{f}_{\mathrm{s}}$ radians, where $\mathrm{f}_{\mathrm{s}}=$ sample frequency

Finally, the Matlab functions represent the -3 dB continuous bandwidth (Hz) as BW_hz.

References

1. Robertson, Neil, "Design IIR Butterworth Filters Using 12 Lines of Code", Dec 2017 https://www.dsprelated.com/showarticle/1119.php
2. Robertson, Neil , "Design IIR Bandpass Filters", Jan 2017
https://www.dsprelated.com/showarticle/1128.php
3. Williams, Arthur B. and Taylor, Fred J., Electronic Filter Design Handbook, $3^{\text {rd }}$ Ed., McGraw-Hill, 1995, section 2.3
4. Analog Devices Mini Tutorial MT-224, 2012 http://www.analog.com/media/en/training-seminars/tutorials/MT-224.pdf
5. Oppenheim, Alan V. and Shafer, Ronald W., Discrete-Time Signal Processing, Prentice Hall, 1989, sections 6.8 and 6.9.
6. Lyons, Richard G., Understanding Digital Signal Processing, $2^{\text {nd }}$ Ed., Pearson, 2004, sections 6.7 and 6.8
7. Blinchikoff, Herman J., and Zverev,Anatol I., Filtering in the Time and Frequency Domains, Wiley, 1976, section 4.7.
8. Nagendra Krishnapura , "E4215: Analog Filter Synthesis and Design Frequency Transformation", 4 Mar. 2003 http://www.ee.iitm.ac.in/~nagendra/E4215/2003/handouts/freq transformation.pdf
