
1

Design IIR Band-Reject Filters

In this post, I show how to design IIR Butterworth band-reject filters, and provide two Matlab functions

for band-reject filter synthesis. Earlier posts covered IIR Butterworth lowpass [1] and bandpass [2]

filters. Here, the function br_synth1.m designs band-reject filters based on null frequency and upper -

3 dB frequency, while br_synth2.m designs them based on lower and upper -3 dB frequencies. I’ll

discuss the differences between the two approaches later in this article. Here is an example function

call to br_synth1.m:

N= 2; % order of prototype LPF

f0= 15; % Hz Null frequency

fU= 16; % Hz fU= upper -3 dB freq

fs= 100; % Hz sample frequency

[b,a]= br_synth1(N,f0,fU,fs)

b = 0.9167 -2.1554 3.1004 -2.1554 0.9167

a = 1.0000 -2.2492 3.0935 -2.0616 0.8404

There are five “b” (numerator) and five “a” (denominator) coefficients, so H(z) is 4th order. The

frequency response is computed as follows, and is plotted in Figure 1.

[h,f]= freqz(b,a,4096,fs);

H= 20*log10(abs(h));

Figure 1. Magnitude response of band-reject filter based on N= 2 lowpass prototype.

f0= 15 Hz, fU= 16 Hz, and fs= 100 Hz.

0 5 10 15 20 25 30 35 40 45 50

-60

-50

-40

-30

-20

-10

0

Hz

dB

2

Filter Synthesis

Here is a summary of the steps for computing the band-reject filter coefficients. Note F is continuous

(analog) frequency in Hz and Ω is continuous radian frequency.

1. Find the poles of a lowpass analog prototype filter with Ωc = 1 rad/s.

2. Given the null frequency f0 and upper -3 dB frequency fU of the digital band-reject filter, find the

corresponding frequencies of the analog band-reject filter (pre-warping).

3. Transform the analog lowpass poles to analog band-reject poles.

4. Transform the poles from the s-plane to the z-plane, using the bilinear transform.

5. Add N zeros at z= exp(jω0) and N zeros at z= z= exp(-jω0), where N is the order of the lowpass

prototype.

6. Convert poles and zeros to polynomials with coefficients an and bn.

These steps are similar to the bandpass design procedure, with steps 2, 3, 5, and 6 modified for the

band-reject case. Now let’s look at the design procedure in detail. The Matlab function br_synth1.m

that performs the filter synthesis is provided in Appendix A.

1. Poles of the analog lowpass prototype filter. For a Butterworth filter of order N with Ωc = 1 rad/s, the

poles are given by [3,4]:

𝑝𝑎𝑘
′ = −𝑠𝑖𝑛𝜃 + 𝑗𝑐𝑜𝑠𝜃

where 𝜃 =
(2𝑘−1)𝜋

2𝑁
, 𝑘 = 1: 𝑁

Here we use a prime superscript on p to distinguish the lowpass prototype poles from the yet to be

calculated band-reject poles.

2. Given null frequency f0 and upper -3 dB frequency fU of the digital band-reject filter, find the

corresponding frequencies of the analog band-reject filter. As before, we’ll adjust (pre-warp) the analog

frequencies to take the nonlinearity of the bilinear transform into account:

𝐹0 =
𝑓𝑠

𝜋
𝑡𝑎𝑛 (

𝜋𝑓0

𝑓𝑠
)

𝐹𝑈 =
𝑓𝑠

𝜋
𝑡𝑎𝑛 (

𝜋𝑓𝑈

𝑓𝑠
)

We also need to find the lower -3 dB frequency FL and the bandwidth BWHz:

 𝐹𝐿 = 𝐹0
2/𝐹𝑈

BWHz = FU – FL

3

3. Transform the analog lowpass poles to analog band-reject poles. See Appendix B for a derivation of

the transformation. For each lowpass pole pa' , we get two band-reject poles:

𝑝𝑎 = 2𝜋𝐹0 [
𝐵𝑊𝐻𝑧

2𝐹0𝑝𝑎
′ ± 𝑗√1 − (

𝐵𝑊𝐻𝑧

2𝐹0𝑝𝑎
′)

2

]

4. Transform the poles from the s-plane to the z-plane, using the bilinear transform (Note there are 2N

poles). This is the same as for the IIR bandpass:

𝑝𝑘 =
1 + 𝑝𝑎𝑘/(2𝑓𝑠)

1 − 𝑝𝑎𝑘/(2𝑓𝑠)
 , 𝑘 = 1: 2𝑁

5. Add N zeros on the unit circle at z= exp(jω0) and N zeros at z= exp(-jω0), where ω0= 2πf0/fs. See

Appendix B for details. We can now write H(z) as:

𝐻(𝑧) = 𝐾
(𝑧 − 𝑒𝑗𝜔0)

𝑁
(𝑧 − 𝑒−𝑗𝜔0)

𝑁

(𝑧 − 𝑝1)(𝑧 − 𝑝2) … (𝑧 − 𝑝2𝑁)
 (1)

In br_synth1.m, we represent the N zeros at exp(jω0) and N zeros at exp(-jω0) as a vector:

 q= [exp(j*w0)*ones(1,N) exp(-j*w0)*ones(1,N)];

6. Convert poles and zeros to polynomials with coefficients an and bn. If we expand the numerator and

denominator of equation 1 and divide numerator and denominator by z2N, we get polynomials in z-n:

𝐻(𝑧) = 𝐾
𝑏0 + 𝑏1𝑧−1 + ⋯ + 𝑏2𝑁𝑧−2𝑁

1 + 𝑎1𝑧−1 + ⋯ + 𝑎2𝑁𝑧−2𝑁
 (2)

The Matlab code to perform the expansion is:
a= poly(p)

a= real(a)

b= poly(q)

We want H(z) to have a gain of 1 at ω= 0. Letting z= ejω, we have z= 1. Then, referring to equation

2, we have gain at ω= 0 of:

𝐻(𝑧 = 1) = 𝐾
∑ 𝑏

∑ 𝑎

So, for gain of 1 at ω= 0, we make 𝐾 = ∑ 𝑎 / ∑ 𝑏.

4

Example 1

Let’s repeat the example of Figure 1, adding some more detail. We’ll plot the poles and zeros computed

by br_synth1.m, and we’ll also look at the group delay. (Note the pole and zero values are not printed

by the code listed in Appendix A). Repeating the function call from above:

N= 2; % order of prototype LPF

f0= 15; % Hz Null frequency

fU= 16; % Hz fU= upper -3 dB freq

fs= 100; % Hz sample frequency

[b,a]= br_synth1(N,f0,fU,fs)

Here are the poles and zeros:

p = 0.5968 + 0.7504i 0.5278 + 0.7973i 0.5278 - 0.7973i 0.5968 - 0.7504i

q = 0.5878 + 0.8090i 0.5878 + 0.8090i 0.5878 - 0.8090i 0.5878 - 0.8090i

The zeros are on the unit circle, with N= 2 zeros at exp(jω0) and 2 zeros at exp(-jω0). The poles and zeros

are plotted in Figure 2. Now let’s look at the filter coefficients.

Numerator coefficients before scaling (note symmetry with respect to center):

b = 1.0000 -2.3511 3.3820 -2.3511 1.0000

Numerator scale factor:

K = 0.9167

Filter coefficients b and a:

b = 0.9167 -2.1554 3.1004 -2.1554 0.9167

a = 1.0000 -2.2492 3.0935 -2.0616 0.8404

From K, b, and a, we can write the filter’s transfer function:

𝐻(𝑧) = .9167 ∗
1 − 2.3511𝑧−1 + 3.382𝑧−2 − 2.3511𝑧−3 + 𝑧−4

1 − 2.2492𝑧−1 + 3.0935𝑧−2 − 2.0616𝑧−3 + .8404𝑧−4

The magnitude response was plotted in Figure 1. Figure 3 shows the magnitude and group delay

responses over a 10 Hz bandwidth centered at the null frequency. The group delay response is not very

flat, even outside the -1 dB frequency of the amplitude response.

5

Figure 2. Poles and zeros of band-reject filter based on 2nd order lowpass prototype.

 f0= 15 Hz, fU= 16 Hz, and fs= 100 Hz. Zeros at z= exp(+-jω0) are 2nd order.

Figure 3. Response of band-reject filter based on2nd order lowpass prototype.

 f0= 15 Hz, fU= 16 Hz, and fs= 100 Hz.

 Top: Magnitude Response Bottom: Group Delay [gd,f]= grpdelay(b,a,4096,fs);

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real

Im
ag f= 0f= fs/2

10 11 12 13 14 15 16 17 18 19 20

-20

-15

-10

-5

0

5

Hz

dB

10 11 12 13 14 15 16 17 18 19 20

0

10

20

30

Hz

G
ro

up
 D

el
ay

 (
sa

m
pl

es
)

6

Example 2

Let’s look at the magnitude response for different filter orders, for a null frequency f0= 30 MHz and -3 dB

bandwidth bw of about 4 Hz. For a narrowband filter, the -3 dB frequencies fU and fL are approximately

f0 + bw/2 and f0 - bw/2, respectively. So we have fU= 30 + 2 = 32 Hz. The function call is:

[b,a]= br_synth1(N,f0,fU,fs)

Letting N = 1, 2, and 3, we compute the magnitude response and obtain the plots shown in Figure 4. All

of the plots have fU of exactly 32 Hz and fL of slightly less than 28 Hz.

Figure 4. Magnitude response of band-reject filters vs. order of lowpass prototype.

 f0= 30 Hz, fU= 32 Hz, and fs= 100 Hz.

Comparing the two Matlab functions for Band-reject Filter Synthesis

From Appendix B, the null frequency of the analog band-reject filter is:

Ω0 = √Ω𝐿Ω𝑈 (3)

where ΩL and ΩH are the lower and upper -3 dB frequencies. In designing a filter, we can choose two of

the three parameters in Equation 3, and the other is then determined. For br_synth1.m, we chose Ω0

and ΩH, while for br_synth2.m, we chose ΩL and ΩH. The disadvantage of the latter choice is that the

25 26 27 28 29 30 31 32 33 34 35

-60

-50

-40

-30

-20

-10

0

Hz

dB

N= 1

N= 2 ----- N= 3

7

null frequency falls at the geometric mean of ΩL and ΩH, which is not convenient if we want a deep null

at a particular frequency.

Figure 5 compares the responses for the two functions. The top plot is for br_synth1.m, with f0= 30 and

fU= 34. The bottom plot is for br_synth2.m, with fL= 26 and fU= 34, which results in a null frequency of

30.168 Hz. Table 1 shows how each Matlab function computes frequencies.

Table 1. Frequency Computations of br_synth1.m and br_synth2.m

 br_synth1(N,f0,fU,fs) br_synth2(N,fL,fU,fs)

discrete input
frequencies

f0, fU fL, fU

Analog pre-warped
frequencies

F0= fs/pi * tan(pi*f0/fs)

FU= fs/pi * tan(pi*fU/fs)

FL= F0^2/FU

FL= fs/pi * tan(pi*fL/fs)

FU= fs/pi * tan(pi*fU/fs)

F0= sqrt(FL*FU);

resulting discrete
frequencies

fL= fs/pi*atan(pi*FL/fs) f0= fs/pi*atan(pi*F0/fs)

Note that [b,a]= br_synth2(N,fL,fU,fs) gives the same results as the Matlab function
[b,a]= butter(N,[fL fU]*2/fs,’stop’).

Figure 5. Magnitude Responses of two Matlab functions, fs= 100 Hz

 Top: [b,a]= br_synth1(2,30,34,fs)

 Bottom: [b,a]= br_synth2(2,26,34,fs)

24 26 28 30 32 34 36

-80

-60

-40

-20

0

Hz

dB

24 26 28 30 32 34 36

-80

-60

-40

-20

0

Hz

dB

8

Coefficient Quantization and Null Depth

The frequency response of a digital filter is H(ejω), with 0 < ω < 2π. In other words, we evaluate

H(z) on the unit circle. As shown in Figure 2, a band-reject filter has N zeros at exp(jω0) and N

zeros at exp(-jω0), which produce a null in the response at ω0. For a real-world filter, the numerator

coefficients b are quantized, which means the zeros don’t fall exactly at the desired spots on the unit

circle. As a result, a practical band-reject filter does not have a perfect null at ω0.

Let’s look at how quantization of the numerator coefficients affects the response of the filter in Example

1, which is based on an N= 2 lowpass prototype. Repeating the function call once again:

N= 2; % order of prototype LPF

f0= 15; % Hz Null frequency

fU= 16; % Hz fU= upper -3 dB freq

fs= 100; % Hz sample frequency

[b,a]= br_synth1(N,f0,fU,fs);

The numerator coefficients are: b = 0.9167 -2.1554 3.1004 -2.1554 0.9167

Now let’s quantize the numerator coefficients to 213 = 8192 steps per unit of coefficient amplitude:

bq= round(b*8192)/8192;

The poles and zeros are then:
q= roots(bq);

p= roots(a);

The amplitude response is computed using bq and a:
[h,f]= freqz(bq,a,Nfft,fs);

H= 20*log10(abs(h));

The resulting zeros and amplitude response are shown in the top row of Figure 6. In the pole-zero plot,
which shows just quadrant 1 of the z-plane, you can just notice that the two zeros do not fall at exactly
the same place. The depth of the null is about 45 dB. If we quantize to 4096 steps, we get the plots in
the bottom row of Figure 6. Null depth is about 33 dB.

Quantizing to 2048 steps gives a null depth of only 25 dB, as shown in the top row of Figure 7. One way
to get a deeper null without adding coefficient bits is to experiment with slight offsets of f0, which may
result in quantized zero locations that are closer to a point on the unit circle. For example, the bottom
row of Figure 7 has 2048 steps and f0 = 15.03 Hz, resulting in a null depth of about 43 dB.

For lowpass prototype N >2 (band-reject order > 4), the effects of quantization of both numerator and
denominator coefficients are more pronounced. Quantization of denominator coefficients can cause a
pole to move outside the unit circle, making the filter unstable. In many cases, it may be advisable to
break the filter up into a cascade of second order sections [5,6].

9

Figure 6. Quantization of numerator coefficients of BRF based on N= 2 lowpass.

 Top row: quantization with 8192 steps per unit of coefficient amplitude

 Bottom row: quantization with 4096 steps per unit of coefficient amplitude

0 0.5 1

0

0.2

0.4

0.6

0.8

1

Real

Im
ag

f= 0
f= fs/2

8192

12 14 16 18

-50

-40

-30

-20

-10

0

Hz

dB

8192

0 0.5 1

0

0.2

0.4

0.6

0.8

1

Real

Im
ag

f= 0
f= fs/2

4096

12 14 16 18

-50

-40

-30

-20

-10

0

Hz

dB

4096

10

Figure 7. Quantization of numerator coefficients of BRF based on N= 2 lowpass.

 Top row: quantization with 2048 steps per unit of coefficient amplitude

 Bottom row: quantization with 2048 steps with f0 offset to 15.03 Hz

0 0.5 1

0

0.2

0.4

0.6

0.8

1

Real

Im
ag

f= 0
f= fs/2

2048

12 14 16 18

-50

-40

-30

-20

-10

0

Hz

dB

2048

0 0.5 1

0

0.2

0.4

0.6

0.8

1

Real

Im
ag

f= 0
f= fs/2

2048, f0= 15.03 Hz

12 14 16 18

-50

-40

-30

-20

-10

0

Hz

dB

2048, f0= 15.03 Hz

11

Appendix A. Matlab Functions br_synth1.m and br_synth2.m

These programs are provided as-is without any guarantees or warranty. The author is not responsible

for any damage or losses of any kind caused by the use or misuse of the programs.

%function [b,a]= br_synth1(N,f0,fU,fs) 1/15/18 Neil Robertson

% synthesize band reject IIR Butterworth filter with null frequency f0 and

% upper -3 dB frequency fU.

%

% N= order of prototype LPF

% f0= null frequency, Hz

% fU= upper -3 dB frequency, Hz

% fs= sample frequency, Hz

function [b,a]= br_synth1(N,f0,fU,fs)

if fU>=fs/2

 error('fU must be less than fs/2')

end

% pre-warp f0 and fu

F0= fs/pi * tan(pi*f0/fs);

FU= fs/pi * tan(pi*fU/fs);

FL= F0^2/FU; % Hz analog lower -3 dB freq

BW_hz= FU-FL; % Hz analog -3 dB bandwidth

%fL= fs/pi*atan(pi*FL/fs) % lower -3 dB freq

% find poles of butterworth lpf with Wc = 1 rad/s

k= 1:N;

theta= (2*k -1)*pi/(2*N);

p_lp= -sin(theta) + j*cos(theta);

% transform poles for brf centered at 2*pi*F0

% note: alpha and beta are vectors of length N; pa is a vector of length 2N

alpha= BW_hz/F0 * 1 ./(2*p_lp);

beta= sqrt(1- (BW_hz/F0./(2*p_lp)).^2);

pa= 2*pi*F0*[alpha+j*beta alpha-j*beta];

% find poles and zeros of digital filter

p= (1 + pa/(2*fs))./(1 - pa/(2*fs)); % poles from bilinear transform

w0= 2*pi*f0/fs;

q= [exp(j*w0)*ones(1,N) exp(-j*w0)*ones(1,N)]; % zeros at w0 on unit circle

% convert poles and zeros to numerator and denominator polynomials

a= poly(p);

a= real(a);

b= poly(q);

b= real(b);

% scale coeffs so amplitude is 1.0 at f= 0

K= sum(a)/sum(b);

b= K*b;

12

%function [b,a]= br_synth2(N,fL,fU,fs) 1/15/18 Neil Robertson

% synthesize band reject IIR Butterworth filter with -3 dB frequencies fL and

%fU. Note null frequency f0 is offset from center frequency.

%

% N= order of prototype LPF

% fL= lower -3 dB freq, Hz

% fU= upper -3 dB freq, Hz

% fs= sample frequency, Hz

function [b,a]= br_synth2(N,fL,fU,fs)

if fU>=fs/2

 error('fU must be less than fs/2')

end

% pre-warp fL and fU

FL= fs/pi * tan(pi*fL/fs);

FU= fs/pi * tan(pi*fU/fs);

BW_hz= FU-FL; % Hz analog -3 dB bandwidth

F0= sqrt(FL*FU); % Hz analog null frequency

f0= fs/pi*atan(pi*F0/fs); % Hz discrete null frequency

% find poles of butterworth lpf with Wc = 1 rad/s

k= 1:N;

theta= (2*k -1)*pi/(2*N);

p_lp= -sin(theta) + j*cos(theta);

% transform poles for brf centered at 2*pi*F0

% note: alpha and beta are vectors of length N; pa is a vector of length 2N

alpha= BW_hz/F0 * 1 ./(2*p_lp);

beta= sqrt(1- (BW_hz/F0./(2*p_lp)).^2);

pa= 2*pi*F0*[alpha+j*beta alpha-j*beta];

% find poles and zeros of digital filter

p= (1 + pa/(2*fs))./(1 - pa/(2*fs)); % poles from bilinear transform

w0= 2*pi*f0/fs;

q= [exp(j*w0)*ones(1,N) exp(-j*w0)*ones(1,N)]; % zeros at w0 on unit circle

% convert poles and zeros to numerator and denominator polynomials

a= poly(p);

a= real(a);

b= poly(q);

b= real(b);

% scale coeffs for gain of 1 at f= 0

K= sum(a)/sum(b);

b= K*b;

13

Appendix B. Lowpass to Band-reject Frequency Transformation

The lowpass to band-reject transformation is the inverse of the lowpass to bandpass transformation we

performed in the last post. In the s-domain, we want to transform a normalized lowpass filter with -3 dB

frequency of 1 rad/s to a band-reject filter with a given bandwidth and null frequency [7,8]. Once we

have the band-reject H(s), we can use the bilinear transform to obtain H(z). We define two frequency

variables:

Ω = Im(s) imaginary part of the complex frequency

Ω’ = Im(s’) imaginary part of the normalized complex frequency

(As in the previous two posts, we use Ω for continuous frequency and reserve ω for discrete frequency).

To transform H(s’) into H(s), substitute the following for s’:

𝑠′ =
𝐵𝑊

Ω0

1

(
𝑠

Ω0
+

Ω0
𝑠

)
 𝐵 − 1

where BW = ΩU-ΩL = -3 dB bandwidth and Ω0 = √Ω𝐿Ω𝑈. As we will show, Ω0 is the null frequency of

the filter. Rearranging B-1, we have:

𝑠′ = 𝐵𝑊
𝑠

𝑠2 + Ω0
2 𝐵 − 2

Then, solving for s:

𝑠 = Ω0 [
𝐵𝑊

2Ω0𝑠′
± 𝑗√1 − (

𝐵𝑊

2Ω0𝑠′
)

2

]

If we replace s’ with a normalized lowpass pole location pa’, we have:

𝑝𝑎 = Ω0 [
𝐵𝑊

2Ω0𝑝𝑎
′ ± 𝑗√1 − (

𝐵𝑊

2Ω0𝑝𝑎
′)

2

] 𝐵 − 3

For each lowpass pole pa’ , we get two band-reject poles. Thus if the lowpass filter has order N, H(s) for

the band-reject filter has order 2N. The IIR filter’s poles are computed from pa using the bilinear

transform, as discussed in step 4 in the section on filter synthesis.

For the Matlab function, we replace Ω0 with 2πF0 and replace BW with 2π*BWHz:

14

𝑝𝑎 = 2𝜋𝐹0 [
𝐵𝑊𝐻𝑧

2𝐹0𝑝𝑎
′ ± 𝑗√1 − (

𝐵𝑊𝐻𝑧

2𝐹0𝑝𝑎
′)

2

] 𝐵 − 4

Oddly enough, the poles of Butterworth band-reject and band-pass filters with the same order, center

frequency and bandwidth are identical. (This results from the lowpass prototype complex-conjugate

poles falling on a unit circle in the s-plane). Thus the feedback (denominator) coefficients of the

bandpass and band-reject filters are the same.

Zeros of H(s) and H(z)

Consider a single-pole normalized lowpass transfer function in s’:

𝐻(𝑠′) =
1

𝑠′ − 𝛼

It has a zero at s’= infinity. From B-2, we have for the corresponding band-reject filter:

𝐻(𝑠) =
1

𝐵𝑊
𝑠

𝑠2 + Ω0
2 − 𝛼

𝐻(𝑠) =
𝑠2 + Ω0

2

𝐵𝑊 ∗ 𝑠 − 𝛼(𝑠2 + Ω0
2)

𝐻(𝑠) =
(𝑠 + 𝑗Ω0)(𝑠 − 𝑗Ω0)

𝐵𝑊 ∗ 𝑠 − 𝛼(𝑠2 + Ω0
2)

H(s) has zeros at +jΩ0 and - jΩ0. In general, if H(s’) has N zeros at infinity, then H(s) has N zeros at +jΩ0

and N zeros at - jΩ0. Thus Ω0 is the null frequency of the analog band-reject filter.

In the z-domain, H(z) has zeros on the unit circle at exp(jω0) and exp(-jω0), where ω0 is related to Ω0 by

the frequency mapping of the bilinear transform [1]:

Ω0 = 2𝑓𝑠 tan (
𝜔0

2
)

or

𝜔0 = 2𝑡𝑎𝑛−1 (
Ω0

2𝑓𝑠
)

We can now write H(z) in pole-zero format as:

15

𝐻(𝑧) = 𝐾
(𝑧 − 𝑒𝑗𝜔0)

𝑁
(𝑧 − 𝑒−𝑗𝜔0)

𝑁

(𝑧 − 𝑝1)(𝑧 − 𝑝2) … (𝑧 − 𝑝2𝑁)
 𝐵 − 5

A z-plane pole-zero plot illustrating the zeros on the unit circle is shown in Example 1 in the main text

(Figure 2).

In the Matlab functions br_synth1.m and br_synth2.m, we expand the numerator and

denominator of H(z) to get the filter coefficients. Note you can begin to expand the numerator by hand

as follows:

𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 = [𝑧2 − 𝑧(𝑒𝑗𝜔0 + 𝑒−𝑗𝜔0) + 1]𝑁

= [𝑧2 − 2 cos(𝜔0) 𝑧 + 1]𝑁

It then turns out that the numerator coefficients are symmetric with respect to the center coefficient,

and the first and last coefficients are unity (before scaling by K).

16

Appendix C Notation

Notation for normalized lowpass continuous frequencies:

normalized radian frequency Ω’ rad/s

normalized complex frequency s’= σ + jΩ’

Notation for band-reject filter continuous frequencies:

-3 dB frequencies ΩL , ΩU rad/s

-3 dB bandwidth BW rad/s

null frequency Ω0 = √Ω𝐿Ω𝑈 rad/s

- 3 dB bandwidth, Hz BWHz Hz

null frequency, Hz F0 Hz

Notation for band-reject filter discrete frequencies:

-3 dB frequencies, Hz fL , fU Hz

null frequency, Hz f0 Hz

General notation:

continuous frequency F Hz

continuous radian frequency Ω radians/s

complex frequency s = σ + jΩ

discrete frequency f Hz

discrete normalized radian frequency ω = 2πf/fs radians, where fs = sample frequency

Finally, the Matlab functions represent the -3 dB continuous bandwidth (Hz) as BW_hz.

17

References

1. Robertson, Neil , “Design IIR Butterworth Filters Using 12 Lines of Code”, Dec 2017

https://www.dsprelated.com/showarticle/1119.php

2. Robertson, Neil , “Design IIR Bandpass Filters”, Jan 2017

https://www.dsprelated.com/showarticle/1128.php

3. Williams, Arthur B. and Taylor, Fred J., Electronic Filter Design Handbook, 3rd Ed., McGraw-Hill, 1995,

section 2.3

4. Analog Devices Mini Tutorial MT-224, 2012 http://www.analog.com/media/en/training-

seminars/tutorials/MT-224.pdf

5. Oppenheim, Alan V. and Shafer, Ronald W., Discrete-Time Signal Processing, Prentice Hall, 1989,

sections 6.8 and 6.9.

6. Lyons, Richard G., Understanding Digital Signal Processing, 2nd Ed., Pearson, 2004, sections 6.7 and

6.8

7. Blinchikoff, Herman J., and Zverev,Anatol I., Filtering in the Time and Frequency Domains, Wiley,

1976, section 4.7.

8. Nagendra Krishnapura , “E4215: Analog Filter Synthesis and Design Frequency Transformation”, 4

Mar. 2003 http://www.ee.iitm.ac.in/~nagendra/E4215/2003/handouts/freq_transformation.pdf

Neil Robertson January, 2018 revised 4/3/2019

https://www.dsprelated.com/showarticle/1119.php
https://www.dsprelated.com/showarticle/1119.php
https://www.dsprelated.com/showarticle/1128.php
https://www.dsprelated.com/showarticle/1128.php
http://www.analog.com/media/en/training-seminars/tutorials/MT-224.pdf
http://www.analog.com/media/en/training-seminars/tutorials/MT-224.pdf
http://www.analog.com/media/en/training-seminars/tutorials/MT-224.pdf
http://www.analog.com/media/en/training-seminars/tutorials/MT-224.pdf
http://www.ee.iitm.ac.in/~nagendra/E4215/2003/handouts/freq_transformation.pdf
http://www.ee.iitm.ac.in/~nagendra/E4215/2003/handouts/freq_transformation.pdf

